Project Description

Emergency Care Units (ECUs) are medical facilities that deal with unplanned patient turnout, for a very large range of conditions, often urgent or acute, and frequently life-threatening. Therefore, ECUs need to find a difficult balance between having enough resources (human and others) to deal with an unexpected surge in patients, while reducing wasteful practices of sustaining more resources than required. Thus, timely information regarding possible variations in patient inflow is fundamental for proper planning and quality of service. But since a broad spectrum of reasons lead people to ECUs, hospital admissions vary significantly. From acute events, to lack of alternatives, or just out of concern, different reasons have different underlying dynamics, are guided by different factors, timings, and motivations. Thus, a combination of uncertainty and large variability, makes the problem of emergency forecasting a very complex challenge, with great impact on quality of care.

We focus on top drivers of ECU seeking behavior and use a Data Science and Machine Learning (ML) approach to study variations in emergency peaks and possible factors that might predict them. We expect to offer a simple prediction, that can be used by decision-makers and reduce uncertainty in ECU patient inflow.

Team

Involved researchers
  • Lília Perfeito

We will be hiring soon, for this project!

Collaborations

Involved researchers
  • Cláudia Soares, IST, Portugal

Publications

In preparation

Funding

Fundação para a Ciência e tecnologia

  • DSAIPA/AI/0087/2018ADD FCT FUNDING

ONGOING

Starting Date: January, 2019
Ending Date: December, 2022 (predicted end date)